3.0. Развед-дроид R2-D2 с неисправным двигателем может перемещаться по навигационной карте сектора 8x8 только на соседнюю по стороне клетку. Сможет ли он, начав путь с юго-западного угла и завершив в северо-восточном, провести сканирование каждой клетки сектора ровно по одному разу? (побывав в клетке, он обязан её просканировать и только ее)

Решение:

Нет. Раскрасим карту сектора как шахматную доску. Юго-западный (левый нижний) и северовосточный (правый верхний) углы имеют одинаковый цвет. Для обхода всех 64 клеток нужно сделать 63 хода. Это нечётное число, а каждый ход меняет цвет клетки. Поэтому, начав на одном цвете, дроид окажется на другом цвете, но финишная клетка имеет тот же цвет, что и стартовая. Противоречие.

3.1. От энергетического щита в форме квадрата 8x8 секций отключили две противоположные по диагонали секции. Можно ли оставшуюся часть щита закрыть 31 стандартным стабилизатором, каждый из которых покрывает ровно две соседние секции?

Решение:

Нет. Раскрасим щит как шахматную доску. Две противоположные угловые секции имеют одинаковый цвет. Поэтому после их отключения останется 30 клеток одного цвета и 32 — другого. Каждый стабилизатор покрывает одну клетку каждого цвета (одну черную и одну белую клетки). Следовательно, покрыть ими щит невозможно.

3.2. На каждой клетке плаца 9х9 стоит штурмовик. Каждый из них должен сделать один шаг на соседнюю клетку так, чтобы снова на каждой клетке оказалось ровно по одному штурмовику. Возможно ли это?

Решение:

Нет. Раскрасим плац в шахматном порядке, чтобы угловые клетки были, например, чёрными. Тогда чёрных клеток будет 41, а белых — 40. При переходе на соседнюю клетку все штурмовики с чёрных клеток окажутся на белых, и наоборот. Значит, после перехода на белых клетках окажется 40 штурмовиков, и одна чёрная клетка останется пустой. Условие задачи не выполнится.

3.3. Два разведчика на спидерах (которые ходят «ходом коня») стартовали с двух угловых постов шахматной доски. Совершив в сумме 77 манёвров, могут ли они оба вернуться на свои исходные посты?

Решение:

Нет. Каждый ход коня меняет цвет клетки. Чтобы вернуться на исходную клетку (того же цвета), каждый разведчик должен сделать чётное число ходов. Сумма двух чётных чисел чётна, а 77 - нечётное число.

Следовательно, это невозможно.

3.4. Можно ли собрать энергетический модуль 10х10 из 25 Т-образных блоков (каждый блок состоит из 4 клеток в форме буквы «Т»)?

Решение:

Нет. Раскрасим модуль в шахматном порядке. Каждый Т-блок (какую бы ориентацию он ни имел) покрывает либо 3 клетки черного цвета и 1 белого, либо 1 черного и 3 белого. То есть всегда нечётное число клеток одного из цветов. 25 блоков дадут нечётное общее количество клеток одного цвета. Но на доске 10х10 клеток каждого цвета поровну (по 50). Противоречие.

3.5. Можно ли расставить на командном щите 8x8 64 силовых генератора с мощностью от 1 до 64 так, чтобы мощность каждого генератора была либо больше, либо меньше мощности всех генераторов в соседних по стороне секциях?

Решение:

Да. Раскрасим щит в шахматном порядке. Расставим генераторы с мощностью от 1 до 32 на клетки одного цвета (например, белого), а генераторы с мощностью от 33 до 64 — на клетки другого цвета (чёрного).

Тогда любой генератор на белой клетке будет меньше всех своих соседей (которые все чёрные), и наоборот.

3.6. Можно ли из 13 ремонтных блоков 1x1x2 собрать куб $3\times3\times3$, в центре которого отсутствует один маленький кубик (дырка 1x1x1)?

Решение:

Нет. Раскрасим куб $3\times3\times3$ в трёхмерную шахматную раскраску (как кубик Рубика). Тогда каждый блок $1\times1\times2$ покрывает один чёрный и один белый маленький куб. В 13 блоках поровну чёрных и белых кубиков (по 13). Но в кубе $3\times3\times3$ (без центрального кубика) одного цвета будет 14 кубиков, а другого — 12. Соответственно, собрать такой куб из блоков невозможно.

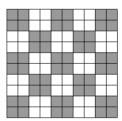
3.7. Можно ли разрезать торт "Звездный разрушитель" (состоящий из треугольников) на 23 одинаковых куска, каждый из которых состоит из двух склеенных треугольников?

Решение:

Нет. Раскрасим все маленькие треугольники в чёрный и белый цвет как шахматную доску. Тогда каждый кусок будет содержать один чёрный и один белый треугольник. Значит, для разрезания всего торта чёрных и белых треугольников должно быть поровну. Но при данной раскраске их количества не равны. Следовательно, раздел невозможен.

3.8. Можно ли заменить повреждённую панель корпуса истребителя размером 10×10 с помощью 25 прямоугольных заплаток размером 1×4 ?

Решение:



Нет. Разобьём панель на квадраты 2×2 и раскрасим их в шахматном порядке. Каждая заплатка 1×4, где бы она ни лежала, будет покрывать 2 клетки одного цвета и 2 другого. Значит, общее количество покрытых светлых и тёмных клеток должно быть равным. Однако при такой раскраске больших квадратов количество светлых и тёмных клеток на панели 10×10 не одинаково. Следовательно, замостить её такими заплатками невозможно.