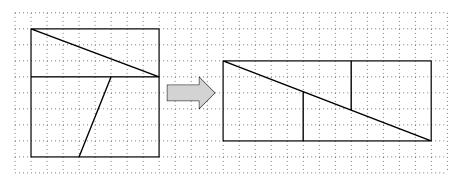
Софизмы

Малый мехмат МГУ

14 ноября 2020 г.

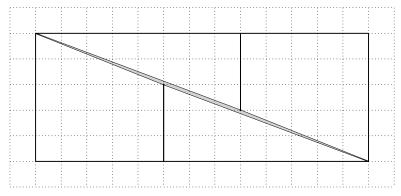
64 = 65

Квадрат 8×8 разрезали на многоугольники, из которых сложили прямоугольник 5×13 (см. рисунок). Откуда взялась лишняя клетка?



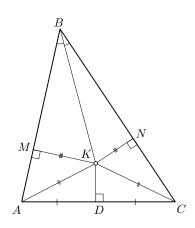
64 + 1 = 65

Всё дело в разнице угловых коэффициентах: 5/2, 8/3, 13/5, поэтому границы треугольников и трапеций не сливаются в диагональ прямоугольника, а образуют прорезь в виде параллелограмма площади как раз одна клетка.

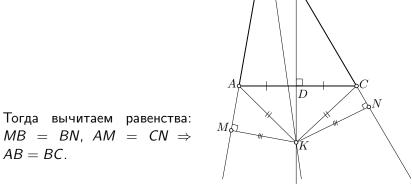


«Теорема»: все треугольники — равнобедренные.

Возьмём произвольный треугольник ABC. Пусть биссектриса угла B и серединный перпендикуляр к стороне ACпересекаются в точке свойству серединного перпендикуляра AK = KC. по свойству биссектрисы перпендикуляры КМ и на стороны AB и AC равны. Отсюда $\triangle MKA = \triangle NKC$ и $\triangle MKB = \triangle NKB$ (по катету и гипотенузе), откуда AM = CNи *MB* = *NB*. Складывая эти равенства, получаем AB = BC.



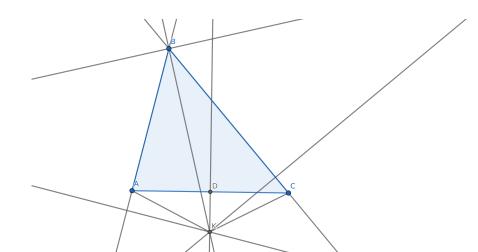
Если точка K вне треугольника.



 $MB = BN, AM = CN \Rightarrow$ AB = BC.

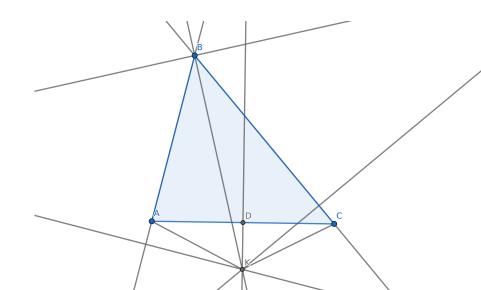
Где же ошибка?

Точка действительно снаружи, но одна её проекция попадает на сторону треугольника, а другая — на продолжение стороны. Соответственно, AB=MB-MA и BC=BN+NC или наоборот.



Задача

Докажите, что точка K лежит на окружности, описанной около $\triangle ABC$.



«Теорема»: все лошади одной масти

Докажем индукцией по числу n лошадей. При n=1 утверждение очевидно. Пусть любые n-1 лошадей одной масти, и нам даны n лошадей:

$$1, 2, \ldots, n-1, n$$
.

Лошади с 1-й по (n-1)-ю одной масти, лошади со 2-й по n-ю тоже одной масти. Значит, все лошади с 1-й по n-ю одной масти.

Где ошибка?

Сделайте шаг индукции от 1 к 2.

Незаметное преобразование

$$x = 1 \Leftrightarrow x^3 = 1 \Leftrightarrow x \cdot x^2 = 1 \Leftrightarrow$$

 $\Leftrightarrow 1 \cdot x^2 = 1 \Leftrightarrow x = \pm 1$

Откуда лишний корень?

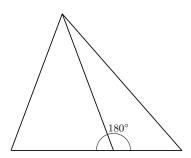
После подстановки x=1 в равенство $x \cdot x^2 = 1$ вместо первого множителя теряется само условие x=1. При подстановке оно должно оставаться в системе:

$$\begin{cases} x \cdot x^2 = 1 \\ x = 1 \end{cases} \Leftrightarrow \begin{cases} 1 \cdot x^2 = 1 \\ x = 1 \end{cases}$$

Простое «доказательство»

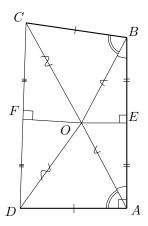
Докажем, что сумма углов любого треугольника равна 180° . В самом деле, обозначим эту сумму через S. Разделим треугольник на два, как на рисунке. Сложив углы полученных двух треугольников, с одной стороны, получим 2S, а с другой — сумму углов большого треугольника плюс величину развёрнутого угла. Итак,

$$2S = S + 180^{\circ} \Rightarrow S = 180^{\circ}$$
.

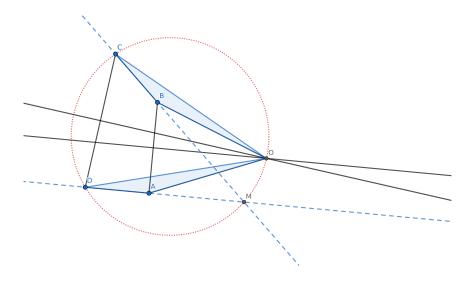


«Теорема»: $90^{\circ} = 91^{\circ}$

Возьмём четырёхугольник *ABCD* с $\angle A = 90^{\circ}, \angle B = 91^{\circ} \text{ if } AD = BC.$ Тогда AB $<math>\bigvee$ CD (иначе ABCD равнобедренная трапеция с неравными углами A и B при основании). Тогда серединные перпендикуляры к АВ и CD тоже не параллельны. Пусть они пересекаются в точке O. Тогда OA = $OB \text{ u } OC = OD \text{ u } \angle OBA = \angle OAB.$ Далее $\triangle OAD = \triangle OBC$ по трём сторонам, откуда $\angle OAD = \angle OBC$. Складывая равенства углов, получим $90^{\circ} = /BAD = /ABC = /91^{\circ}$.



Где на самом деле точка O и что с углами?



Задача

Докажите, что точка O лежит на окружностях, описанных около $\triangle MCD$ и $\triangle MAB$, где M — точка пересечения прямых AD и BC.

