Теорема. Пусть $x_1, x_2 - \kappa$ орни уравнения $ax^2 + bx + c = 0$, где $a \neq 0$. Тогда справедливы следующие равенства: $x_1 + x_2 = -\frac{b}{a}$, $x_1 \cdot x_2 = \frac{c}{a}$.

- **6.1.** Решите уравнение: **a)** $x^2 + 2023x 2024 = 0$; **6)** $2024x^2 + 2023x 1 = 0$.
- **6.2.** Для многочлена $f(x) = x^2 + px + q$ найдите все значения p и q, при которых выполнены равенства f(p) = f(q) = 0.
- **6.3.** Пусть x_1, x_2 корни уравнения $ax^2 + bx + c = 0$, где $a \neq 0$.

Составьте уравнение, корнями которого будут числа: а) $2x_1$ и $2x_2$; б) x_1^2 и x_2^2 ;

в)
$$x_1^3$$
 и x_2^3 ; г) $x_1 + \frac{1}{x_2}$ и $x_2 + \frac{1}{x_1}$; д) $\frac{x_2}{x_1}$ и $\frac{x_1}{x_2}$; е) $\frac{1}{ax_1 + b}$ и $\frac{1}{ax_2 + b}$.

- **6.4.** Известно, что корни уравнения $x^2 + px + q = 0$ целые числа, а p и q простые числа. Найдите p и q.
- **6.5.** Найдите все значения параметра m, при которых:
- а) сумма квадратов корней уравнения $x^2-(m+1)x+m-1=0$ будет наименьшей; б) уравнение $(m-1)x^2-2(m+1)x+2(m+1)=0$ имеет единственный неотрицательный корень.
- **6.6.** На доске было написано уравнение вида $x^2 + px + q = 0$ с ненулевыми целыми коэффициентами p и q. К доске по очереди подходили школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являлись коэффициенты p и q стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, которое было написано на доске изначально. Какое уравнение изначально было написано на доске?
- 6.7 (теорема Виета для кубического уравнения).

Пусть x_1, x_2, x_3 — корни уравнения $ax^3 + bx^2 + cx + d = 0$, где $a \neq 0$.

Докажите, что
$$x_1 + x_2 + x_3 = -\frac{b}{a}$$
, $x_1x_2 + x_2x_3 + x_3x_1 = \frac{c}{a}$, $x_1x_2x_3 = -\frac{d}{a}$.
Подсказка: если x_1, x_2, x_3 — корни уравнения $ax^3 + bx^2 + cx + d = 0$, то $ax^3 + bx^2 + cx + d = a(x - x_1)(x - x_2)(x - x_3)$.

- 6.8. Решите уравнение:
- a) $x^3 2x^2 x + 2 = 0$; 6) $x^3 8x^2 + 17x 10 = 0$;
- **B)** $2x^3 16x^2 + 18x + 36 = 0.$
- **6.9.** Известно, что x_1, x_2, x_3 корни уравнения $3x^3 2x^2 + x + 1 = 0$. Составьте уравнение с целыми коэффициентами, корнями которого будут числа $y_1 = x_2x_3, \quad y_2 = x_1x_3, \quad y_3 = x_1x_2$.
- **6.10.** Составьте уравнение, корнями которого являются квадраты корней уравнения $x^3 + x^2 2x 1 = 0$.