Построим равнобедренный треугольник из целых чисел по следующим правилам:

- в вершине и вдоль боковых сторон стоят единицы;
- в каждой следующей строке на одно число больше, чем в предыдущей;
- каждое число, кроме уже написанных единиц, равно сумме двух чисел, стоящих в предыдущей строке чуть левее и чуть правее.

Получим такой треугольник (он называется треугольником Паскаля):

Обозначим через C_n^k k-е по счёту слева число в n-й строке треугольника Паскаля (нумерация строк и элементов каждой строки начинается с нуля). Так, $C_2^0=1,\,C_4^2=6.$

Теорема (бином Ньютона). Если раскрыть скобки и привести подобные в выражении $(a+b)^n$, то коэффициент при a^kb^{n-k} будет равен C_n^k :

$$(a+b)^n = C_n^0 a^0 b^n + C_n^1 a^1 b^{n-1} + C_n^2 a^2 b^{n-2} + \ldots + C_n^{n-1} a^{n-1} b^1 + C_n^n a^n b^0.$$

- **19.1.** Раскройте скобки и приведите подобные в выражении $(a+b)^7$.
- **19.2. а)** Почему $11^2 = 121$ и $11^3 = 1331$ похожи на строки треугольника Паскаля? Вычислите без калькулятора и умножения в столбик: **б**) 11^4 ; **в**) 21^4 ; **г**) 19^4 .
- **19.3.** Найдите количество нулей на конце числа $11^{100} 1$.
- 19.4. Сколько рациональных слагаемых содержится в разложении:
- a) $(\sqrt{2} + \sqrt[4]{3})^{100}$; 6) $(\sqrt{2} + \sqrt[3]{3})^{100}$?

19.5. Рассмотрим числа
$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right), \ n \geqslant 0.$$

- а) Вычислите f_0, f_1, f_2, f_3 . б) Докажите, что при любом целом $n \geqslant 0$ число f_n — целое. **в)** Докажите, что при любом натуральном n выполнено равенство $f_{n+1} = f_n + f_{n-1}$. Таким образом, $\{f_n\} - nоследовательность чисел Фибоначчи.$
- **19.6.** Докажите, что $C_n^k = C_n^{n-k}$. Подсказка: $(a+b)^n = (b+a)^n$.
- 19.7. Докажите, что:
- a) $C_n^0 + C_n^1 + C_n^2 + \ldots + C_n^{n-1} + C_n^n = 2^n$; **6)** $C_n^0 C_n^1 + C_n^2 \ldots + (-1)^n C_n^n = 0$; **B)** $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$; **r)** $(C_n^0)^2 + (C_n^1)^2 + (C_n^2)^2 + \ldots + (C_n^n)^2 = C_{2n}^n$. $Hodckasku: 1+1=2; 1-1=0; (a+b)^{n+1} = (a+b)^n (a+b); (a+b)^{2n} = (a+b)^n (a+b)^n$.
- **19.8.** В разложении выражения $(x+y)^n$ с помощью бинома Ньютона второй член равен 240, третий — 720, а четвёртый — 1080. Найдите x, y, n.